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The effects of inelastic unitarity on dynamical calculation of nucleon-nucleon scattering are studied, using 
the N/D formalism for partial-wave amplitudes modified to take into account reaction channels by means of 
the inelastic factor rj. The equations are solved for the XD% amplitude for which the inelastic scattering is 
known (for laboratory kinetic energies £x<800 MeV) and large. We use left-hand-cut Born terms deter­
mined by Scotti and Wong. The calculated (real part of the) phase shift 5 agrees very closely with the Scotti-
Wong results for EL S 200 (for reasonable choices of the high-energy behavior of rj) but deviates appreciably 
at higher energy, peaking at «400-500 MeV and going negative at > 1 BeV. 

I. INTRODUCTION 

N UCLEON-NUCLEON scattering has been studied 
intensively both experimentally and theoretically. 

The experimental data yield a unique set of (real) phase 
shifts for incident laboratory kinetic energy EL<300 
MeV.1 In addition, there are nonunique (complex) 
phase-shift analyses at ~650 and 970 MeV.2'3 On the 
other hand, dynamical calculations have been mainly 
concerned with energies E L < 4 0 0 MeV where inelastic 
nucleon-nucleon scattering is negligible (it is zero below 
300 MeV). These calculations have had a good deal of 
success in fitting the phase shifts (or the observables 
directly) as a function of energy with a reasonably small 
number of parameters. For example, the dispersion 
theory calculations of Scotti and Wong (S-W),4 who 
consider the multimeson exchanges between the nucleons 
to proceed via the recently discovered multipion reso­
nances, have been very successful. 

However, these dynamical calculations of the elastic 
scattering still depend on the scattering to inelastic 
channels even if, in the region of interest, no inelastic 
scattering is energetically possible. The inelastic channels 
are in practice usually ignored. In particular, solution 
of partial wave dispersion relations involves integrals 
over all physical energies (as well as the left-hand cut). 
S-W assumed that only elastic scattering occurs at 
all EL. 

* Supported in part by the U. S. Air Force through Air Force 
Office of Scientific Research Contract AF 49 (638) -1389. Com­
puter time was supported by NSF Grant No. NSF-GP948. 
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B 

The purpose of this article is to study the effects of 
including inelastic unitarity on the physical cut in 
solving the partial wave dispersion relations for N-N 
scattering6,6 We have in mind two features: 

(i) Investigate whether including inelastic processes 
modifies the agreement of the S-W calculations with 
experiment in the energy range EL$J300 MeV. 

(ii) Extend the theoretical calculations to an energy 
region where we know that the inelastic scattering is 
large. 

There are two different approaches that can be used 
to include inelastic effects. The multichannel N/D 
formalism is applicable but it has the disadvantages that 
only two body channels can be treated properly, many 
unknown parameters enter in the calculations, and the 
numerical solution of the coupled integral equations is 
very time consuming even on the fastest computers; of 
course one calculates more observables, i.e., the indi­
vidual reaction cross sections. The approach we will use 
is the following: assume some knowledge of the total 
partial wave reaction cross section oc(l —^2) [where 
7j = exp(—2dI) with 81 the imaginary part of the elastic-
scattering phase shift] and solve the one channel N/D 
equations modified to take into account inelastic proc­
esses by means of the factor 77. We use the method de­
veloped by Frye and Warnock7 which seems a more 
straightforward extension of the pure elastic case, 
ri(E)=l, than that given by Froissart.8 The relevant 
formalism is presented in Sec. II. 

We investigated only the 1Z)2 partial wave, since rj for 
this amplitude has been determined from experi-

5 Preliminary results were presented by G. Shaw and A. Scotti, 
Bull. Am. Phys. Soc. 9, 62 (1964). 

6 Inelastic effects in N-N scattering have recently been con­
sidered by Y. Leung, Bull. Am. Phys. Soc. 9, 62 (1964); and M. 
MacGregor, Phys. Rev. Letters 12, 403 (1964); also see, M. 
Moravcsik, UCRL-7778, 1964 (unpublished). 

7 G. Frye and R. Warnock, Phys. Rev. 130, 478 (1963). 
8 M. Froissart, Nuovo Cimento 22, 191 (1961). 
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ment9 (see Section III) up to EL^S00 MeV and 1 - y 
is large. Various choices of the high-energy behavior of 
7] were considered. The left-hand-cut Born terms were 
taken from the calculations of S-W. 

The results of the calculations are presented in Sec. 
I I I . In brief, they can be summarized as follows: The 
calculated (real part of the) phase shift 5 for the lD% 
partial wave agrees very closely with the S-W results 
for E L < 2 0 0 MeV (for reasonable choices of the high-
energy behavior of rj). However, it deviates appreciably 
at higher energy, peaking at ~400-500 MeV and going 
negative at > 1 BeV.10 

In conclusion, we would like to stress that although it 
seems like a very good approximation to neglect inelastic 
unitarity for dynamical calculations in the energy range 
E L < 200 MeV, any quantitative dynamical calculation 
for E L > 3 0 0 MeV must include the inelastic cut. I t then 
becomes important to experimentally extend our knowl­
edge of the inelastic cross sections to higher energy. 

II. N/D EQUATIONS WITH INELASTIC UNITARITY 

Since our calculations will be restricted to the singlet 
amplitude, consider the scattering of two "spinless" 
nucleons with mass M and momentum k in the center -
of-mass system. The elastic partial wave amplitude can 
be written [as a function of the scalar s=4:(k2+M2)~]n as 

i l iW = ( l /2 ipO( i7 i (^ 2 i 8 l ( ' ) - l ) = 5 l ( j ) + M ^ ) J (1) 

where pi(s) is a kinematical factor and Bi(s) is regular in 
the physical region, whereas RAi(s) only has cuts for 
S>4:M2Z==SE. The inelastic partial wave cross section <rr

l 

is determined by rji alone: 

c r r ^ 7 r / e 2 ( 2 / + l ) [ l - ^ 2 ( ^ ) ] . (2) 

Given the generalized potential Bi(s), which contains 
the left-hand discontinuity, unitarity determines the 
right-hand discontinuity in Ai(s): 

1 r ds' 
Al(s) = Bl(s)+- / - H ^ O I W ) 

-ie) 

1 /•*> ds' l~V2i(s') 

+- / " — , 
* J *i (s'—s—ie) 4pi(s') 

(3) 

where si is the inelastic threshold. The nonlinear integral 
equation, (3), determines the real part of the scattering 
phase shift 8i(s). 

Froissart8 has given a method of reducing (3) to a 
form where it can be treated by the N/D formalism. 
However, it does not seem as convenient a generaliza­
tion of the pure elastic | J ? J ( S ) = 1 ] case4,12 as that of 

9 L. Soroko, Zh. Eksperim. i Teor. Fiz. 35, 276 (1958) [English 
transl.: Soviet Phys.—JETP 8, 190 (1959)]. 

10 The quantitative behavior of 5 depends on the assumed high-
energy behavior of rj: appropriate choices can be made so that 
5(E) agrees with the nonunique phase shift analyses at 650 and 
970 MeV (Ret 2 and 3). 

11 We use units h = c= 1. 
12 J. Uretsky, Phys. Rev. 123, 1459 (1961). 

Frye and Warnock.7 The Frye and Warnock equations 
which we will use for our calculations can be obtained 
as follows: 

Let 
A^s^Niisi/Diis) (4) 

where, as in the pure elastic case, we assume that Di(s) 
has no left-hand cut and write 

Dl*{s)/Dl(s) = e2i^*\ s>sE (5) 
so that 

N,(s) = ll/2iPl(s)Tvi(s)Dl* (s) - D,(s)2 • (6) 

From (6) the following relations are immediately found13: 

2Pi(s) 
lmDi(s) = ReN,(s)0(s-sii), (7) 

ImNt(s) = -— ReD,(*). 
2p*0) 

(8) 

Thus, in addition to the "usual" left-hand cut, Ni has a 
right-hand cut starting at the lowest inelastic threshold. 

Using (7), we write a (subtracted) dispersion relation 
iorDi(s): 

s-so f00 2Pl(s')ReNi(s')ds' 
ReD,(j) = l PI . (9) 

7T Jaall + Vl(s')Js'-So)(s'-s) 

Now rewrite (1) as 

TJSI 2 p z ( / ) ( / - ^ - i e ) 

Thus the expression 

Cl(s)^Nl(s)-Bl(s)Dl(s) 

1 f00 Ll-ViWW 

: ( ' ) • • 

i r 

. 7T J si 2Pl(s')(s'-S-ie) 
Dt(s) (10) 

has only a right-hand cut beginning at SE- From (7) and 
(8), we obtain for S>SE 

2rji(s) 
ReQC?) = ReNi(s) 

l+Vi(s) 

-[Bi(s)+—- 1̂ 
\ x J.j 2pi(s')(s'-s) I 

XReD,( j ) , (11) 

ImC,(s) = Bl(s)+- / ) 
\ x J., 2p,(s')(s'-s) J 

2pi(s) 
X-

1+Vi(s) 
ReNt(s). (12) 

' J. Ball and W. Frazer, Phys. Rev. Letters 7, 204 (1961). 
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Finally, writing a dispersion relation for Ci(s) using (11) 
and (12), and (9) to express ReDi(s) in terms ReNi(s), 
we have 

2yi(s) 

where 

•Ni(s)=Sl(s)+ / 
J 8 

x 2Pi(s') ReNi(s')ds' 

Li+vi(s01(/-s) 

Bi(s) = Bi(s)+ 

['•""OH-

x ]„ 2pi(s')(s'- s) 

(13) 

(14) 

These equations are a straightforward extension of the 
"pure elastic" N/'D equations. With "proper" behavior 
of Bi(s) and rji(s) at s= <*> ,14 the integral equation (13) 
for Ni(s) is readily solved numerically by the matrix 
inversion method. The asymptotic and threshold be­
havior of (13) are discussed in the following section. 

III. CALCULATIONS AND DISCUSSION 

We encounter the same difficulties that occur in ob­
taining the correct threshold behavior as for the pure 
elastic [^(-0 = 1] case: approximating Bt(s) by the 
partial wave projection of single-particle exchange con­
tributions, the correct threshold behavior of the uni-
tarized amplitude for l>0 must be forced. One sub­
traction can be performed in the integral equation for N 
and still retain an acceptable behavior for large s. For 
Z>0, we use the procedure of Scotti and Wong: make 
one subtraction at threshold in the equation for N, (13), 
and introduce an (/— 1) order pole on the left-hand cut, 
i.e., we choose pi(s) to have the form 

/s-4M2\1'1 /s-4:M2\1/2 

' * > = < — ) ( — ) • < i 5 > 

With the above pi(s), the second term in (14) will 
diverge if ^ ' ( o o ) ^ l . Two points of view might be 
adopted: (1) The contribution to 1 —T?Z at large s from an 
individual inelastic channel goes to zero so that, if we 
consider a finite number of inelastic channels, w(«>) = 1. 
(ii) However, physically we expect that as the energy 
becomes infinite, an infinite number of inelastic channels 
open up and that whereas di —> 0, rji —» rji( co) < 1; 

Ai(s)-
1 2ip(oo) 

(16) 

TABLE I. Left-hand-cut Bom term for the XZ>2 partial wave as 
determined by S-W (with m^—V). The S-W p was of the form 
(s-4M2A)1/2M. 

Clearly, far away left-hand singularities for this 
infinite number of inelastic channels must be important 
in determining the asymptotic behavior (16) of the 
amplitude. If, as indicated from the Regge description 
of high-energy scattering, Ai(s) approaches the same 

14 See Ref. 7 for a general discussion. 

k2 

0.009691 
0.089222 
0.246947 
0.491235 
0.819426 
1.23814 
1.75351 
2.37329 
3.10729 
3.96771 
4.96972 
6.13224 
7.47888 
9.03936 
10.8514 
12.9636 
15.4392 
18.3618 
21.5447 
26.0448 
31.1843 
37.5919 
45.7787 
56.5343 
71.2880 
92.6369 
126.420 
187.284 
329.523 
1041.35 

Bs-wfr) 

0.000026 
0.001415 
0.006061 
0.012564 
0.019497 
0.026591 
0.033987 
0.041743 
0.049737 
0.057723 
0.065384 
0.072407 
0.078496 
0.083389 
0.086864 
0.088734 
0.088849 
0.087098 
0.083439 
0.077961 
0.071013 
0.063449 
0.057101 
0.055526 
0.064878 
0.093683 
0.147304 
0.211428 
0.241625 
0.191039 

<£B s-w (?)/<& 

0.001270 
0.006351 
0.007382 
0.006008 
0.004697 
0.003875 
0.003348 
0.002928 
0.002528 
0.002121 
0.001714 
0.001320 
0.000954 
0.000627 
0.000344 
0.000109 

-0.000079 
-0.000213 
-0.000303 
-0.000342 
-0.000327 
-0.000256 
-0.000128 
0.000052 
0.000252 
0.000393 
0.000369 
0.000164 

-0.000003 
-0.000013 

limit (16) as ^ —> =1= oo ,15 then the Bt(s) term of (1) con­
tains a term of the form 

1 r»[l-m(s')lds' 

TV J s 2Pl(s')(s'+s) 

for sufficiently large si. We will assume that Bi(s) may­
be expressed as 

1 r il-vi(s')lds' 
BM-Hts)— - — — = - , d7) 

7T J SJj 2pi(sf)(S +S) 

where B^(^) is the Born term calculated by S-W. Then 
for 1>1, the subtracted (at S=SE) form of (13) for Ni 

has a Bi(s), (14), given by 

Ll-mWW 
Bl(s) = Bl(s)+ \P — 

T L JsI2Pl(s')(s'-s)(s'-SE) 

+/ 11-niWW 
*L 2Pl(s')(.s'+s)(s'+sE) •]• 

(18) 

We see then that Bi(s) is bounded as s —> GO for any form 
for rji(s) if Bi(s) is also bounded. I t follows then that 
(13) is a Fredholm integral equation which may be 
solved for ReNi(s) provided that rn(s)^0.16 

15 R. Omnes, Phys. Rev. 133, B1543 (1964). 
161) can approach 0 as .?—> <» provided Bi(s)-^0 faster (see 

Ref. 7). For our problem, »?(s)—»«-oo(lns)~"x was acceptable behavior, 
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i.o 

0.8k \ 

0,6r \ 
\ FIG. 1. Plot of v2 
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\ taken from Ref. 9. 
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The calculations presented in this paper were re­
stricted to the 1D2 partial wave, since 77 for this partial 
wave is known experimentally up to E L ~ 8 0 0 MeV and 
1 — 7] is large. 

The Born term Bi(s) which was used in the present 
calculations was taken to be that determined by S-W. 
It was found by considering the exchange of a pion, an 
7=0 5-wave ir-w system and the multipion resonances 
ri, p, 4>, co, in nucleon-antinucleon scattering. This is then 
related, using crossing symmetry, to N-N scattering 
and the 1D2 partial wave is projected out. For the vector 
particle (p,$,w) exchanges, the logarithmic divergence in 
Bi(s) for s —>oo was avoided by a cutoff procedure which 
is related to the interpretation of these particles as 
Regge poles. Instead of giving the input parameters in 

- 8 1 ' 1 l I I I I ,1 1 I I I L I M i l I 
10 20 40 60 100 200 1000 2000 

LAB ENERGY MeV 

FIG. 2. Plot of (real part of) the phase shift 5 for XZ>2 partial wave 
as a function of the laboratory kinetic energy EL. The dashed 
curve corresponds to the pure elastic case [i.e., ??(s) = l j . The 
asymptotic behavior of t\ is of the form As/(B-\-s) where A and B 
are constants. 

terms of the relevant coupling constants and Regge 
slopes, we present in Table I values of Bt(s) and 
dBi(s)/ds for the 1D2 partial wave determined by S-W 
and used in our calculations. 

Mandelstam17 calculated cross sections for A7+Af—» 
N-\-N-\-TT by assuming that the pion production occurs 
in only a few angular momentum states, and that the 
transition matrix element is constant except for factors 
due to the final state A7-A7 and ir-N interactions. The 
outgoing 7r is assumed to be in J=f, I—§ resonant state 
with one of the nucleons. A three-parameter theory was 
constructed which gave a good representation of both 
total and differential pion production cross sections up 
to ~-700 MeV except near threshold where nonresonant 
production is important and further parameters were 
needed. 

LAB ENERGY MeV 

FIG. 3. Same as Fig. 2. 

Employing Mandelstam's theory, Soroko9 used ex­
perimental data for the reactions listed below to com­
pute rj(s) for the 1D2 partial wave in p-p scattering. The 
important channels for protons with EL<SQ0 MeV are 

(a) p+p-^p+p, 
(b) -^J+7r+ ( V ) 2 , 

(c) ~> p+n+ir+ (hip)*, 

(d) ~>p+p+TT° (sp2sh, 

where, e.g., (3Sip)2 means that the deuteron (or n-p) is 
in a zsi state and the ir+ is in a p state relative to the d 
(or the n-p center of mass). The last reaction is negli­
gible in comparison to the first three. Soroko's results, 
reproduced graphically in Fig. 1, were used in our calcu­
lation of the real part of the phase shift d(s) for the lD2 

partial wave. 
In our calculations we represented rj{s) by various 

analytic forms. They all had the features of behaving 
17 S. Mandelstam, Proc. Roy. Soc. (London) A244, 491 (1958). 
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like 

40 60 100 200 
LAB ENERGY MeV 

FIG. 4. Same as Fig. 2. 

l — 7}(s)oc q* 

1000 2000 

right above the ir+d threshold (where q is the momentum 
of this channel in the center-of-mass system) and giving 
a good fit to Soroko's data up to EL =700 MeV. For 
higher energies rj(s) was allowed to assume different 
asymptotic forms and approach different limits rj(s= <*>). 
The calculated 8(s) for various choices of the high-energy 
behavior of rj(s) are given in Figs. 2-7. For comparison 
the values of 8 for rj(s)==l (i.e., no inelastic scattering) 
are given by the dashed curves. The sensitivity of the 
results to the choices of the parameters Si [see Eq. (15)] 
and SL [see Eq. (17)] were tested and found to be small.18 

We observe the general feature that including the in­
elastic terms acts as an attraction below the inelastic 
threshold. However, we note that there is very little 

20 40 60 100 200 

LAB ENERGY MeV 

1000 2000 

FIG. 5. Same as Fig. 2. 
18 Variations in si from 0 to 100 mr

2 and sL from 1000 to 5000 
MT? each yielded changes in 5 (££=200 MeV) of <0.5°. Changes 
for higher EL were somewhat larger but the results were qualita­
tively the same. 
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LAB ENERGY MeV 
1000 2000 

FIG. 6. Same as Fig. 2 except that the asymptotic 
behavior of rj is of the form [l+-4/ln(s/JB)]. 

difference from the "pure elastic" calculations up to 
EL « 200 MeV. The calculated 8 peak at ~ 400-500 MeV 
and go negative at > 1 BeV.10 

Although we restricted our present calculations to the 
1D2 partial wave, we would like to emphasize the follow­
ing features which should apply to the iV-AT problem 
in general. 

(i) Despite the fact that 1 — rji is quite small in the 
energy region 300-500 MeV, any quantitative dynamical 
calculation for 8i(s) in this energy region (or higher) 
must include the effect of the inelastic cut. 

(ii) Since the present dynamical calculations indicate 
8 is rapidly varying in energy above 300 MeV, it may be 
misleading to do an energy average of the experimental 
data in order to perform a phase shift analysis. 

(iii) Finally, we want to stress the importance of ex­
perimentally extending our knowledge of the 77's to 
higher energy: quantitative dynamical calculations of 

20 40 60 100 200 
LAB ENERGY MeV 

1000 2000 

FIG. 7. Same as Fig. 2 except that the asymptotic 
behavior of rj is of the form A/ln(s/B). 
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the 5Js above 300 MeV depend crucially on them. This 
can be attacked in two ways: at moderate energies de­
tailed knowledge of the inelastic production angular 
distribution might be combined with analyses similar 
to those of Mandelstam and Soroko. At high energies 
the 5Js probably go to zero so that a phase shift analysis 

INTRODUCTION 

IN the last few years increasing amounts of evidence 
have been gathered to indicate the quantum field 

theory has sufficient untapped potential to allow it to 
deal fairly simply with the vast number of observed 
particles. The basis of this evidence is the observation 
that it is probably possible for one field operator to be 
associated with more than one particle. This possibility 
was first explored by Heisenberg1,2 and his co-workers in 
a series of papers on nonlinear field theory. However, 
Heisenberg's work involved the introduction of several 
concepts which are radically different from those of 
ordinary field theory. 

Using less radical concepts developed recently to ex­
plain the phenomena of superconductivity,3,4 it was 

* Parts of this paper were contained in a thesis submitted to 
Harvard University in partial fullfilment of the requirements for 
the Ph.D. degree. 

f The research reported in this document has been sponsored in 
part by the U. S. Air Force Office of Scientific Research OAR 
through the European Office Aerospace Research U. S. Air Force. 

J National Science Foundation Postdoctoral Fellow. 
1 W. Heisenberg, Z. Naturforsch. 14, 441 (1959). 
2 W. Heisenberg, Rev. Mod. Phys. 29, 269 (1957). 
3 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 106, 

162 (1957). 
4 N. N. Bogoliubov, Zh. Eksperim. i Teor. Fiz. 34, 58,5.73 (1958) 

[English transl: Soviet Phys—JETP 7, 41, 51 (1958)]; N. N. 
Bogoliubov, V. V. Tolmachev, and D. V. Shirkov, A New Method 
in the Theory of Superconductivity (Academy of Sciences of USSR, 
Moscow, 1958). Also, J. G. Valatin, Nuovo Cimento 7, 843 (1958). 

of the elastic scattering might be done solely in terms 
of the rj}s. 
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possible for Jona-Lasinio and Nambu5 '6 to develop a 
nonlinear theory in which the "pion" is not introduced 
as a separate field but as an excitation associated with 
a current of the fermion field. The basic assumption 
that allows the occurence of the pion is that the vacuum 
is a degenerate state. In particular, it is assumed that 
the vacuum is no longer invariant under the continuous 
group of rotations in 75 space. I t is then said that the 
75 symmetry is "broken." This assumption, although it 
is alien to long cherished beliefs in the quantum field 
theory of particles, is not at all unusual in other 
branches of physics. The ground state of a super­
conductor or ordinary paramagnetism are common 
examples of "broken symmetries." 

In this work we shall study a way of "creating" a 
photon by "breaking" the invariance of the vacuum 
under Lorentz transformations. The suggestion that a 
photon might be created in this manner was first made 
by Bjorken.7 The possibility of generating a photon 
through a four-fermion interaction has also been pre­
viously examined by Heisenberg1,2 and Birula.8 The 
essential feature in the Bjorken-type theory is that the 
masslessness of the derived particle is associated with 

s Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961). 
6 G. Jona-Lasinio and Y. Nambu, Phys. Rev. 124, 246 (1961). 
7 J. D. Bjorken, Ann. Phys. 24, 174 (1963). 

I 8 I . Bialynicki-Birula, Phys. Rev. 130, 465 (1963). 
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Photon as a Symmetry-Breaking Solution to Field Theory. I*f 
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The mechanism which guarantees the consistency of the angular-momentum conservation and commuta­
tion rules of a Lorentz-invariant theory with the requirement that the vacuum expectation of a vector 
operator be nonvanishing is examined in detail. A theory originally proposed by Bjorken which reproduces 
ordinary electrodynamics is presented in a manner which allows the calculation of the parameters of the 
theory. In particular the "consistency condition" is displayed and found to be quadratically, not cubically, 
divergent. It is shown that the original Bjorken solution occurs when the cutoff condition of the theory is 
taken literally. This attitude results in difficulties with current conservation and leads to transitions between 
the standard vacuum and anomalous degenerate states. These transitions alone, and not the ones directly in­
volving the massless vector particles induced by the broken symmetry, are responsible for the ultimate con­
sistency of the theory. An alternative formulation of the theory which does not take the cutoff so seriously, 
and hence places emphasis on the underlying operator structure rather than the perturbation Green's func­
tions of the theory, is proposed. This presentation is essentially equivalent to the original formulation since 
it differs only by gauge terms. However, in this case no difficulty is encountered with current conservation 
and the theory is consistent in the manner required by normal formulations of the Goldstone theorem. 


